Lysosomal Packaging in Differentiating and Degenerating Anuran Lateral Motor Column Neurons
نویسنده
چکیده
The role of the Golgi apparatus and the Golgi-endoplasmic reticulum-lysosome complex (GERL) in the genesis of lysosomes was examined in differentiating and degenerating motor neurons of anuran larvae. Acid phosphatase, aryl sulfatase, and thiolacetic acid esterase were utilized as marker enzymes for the lysosomal system, while nucleoside diphosphatase and thiamine pyrophosphatase labeled the inner saccule(s) of the Golgi apparatus. Reduced osmium tetroxide was routinely deposited in the outer Golgi saccule regardless of the state of neuronal maturation. In all young neurons, the disposition of acid hydrolase reaction product paralleled the formation of GERL, with no lytic activity in the Golgi apparatus per se. Hypertrophy of the Golgi apparatus and GERL was observed in the early phases of degeneration, and both organelles apparently exhibit extensive hydrolytic activity. Dense bodies, autophagic vacuoles, and primary lysosomes were found arising from GERL, while the Golgi apparatus may produce primary lysosomal granules during regression. On the other hand, in differentiating neurons, hydrolytic activity was restricted to GERL and an occasional dense body and autophagic vacuole. These studies illustrate a parallelism between the development of GERL and genesis of primary and secondary lysosomes during neuronal cytodifferentiation, and implicate GERL and possibly the Golgi apparatus in lysosomal packaging in degenerating neurons.
منابع مشابه
Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice.
Cytoskeletal abnormalities with accumulation of ubiquilated inclusions in the anterior horn cells are a pathological hallmark of both familial and sporadic amyotrophic lateral sclerosis (ALS) and of mouse models for ALS. Phosphorylated neurofilaments besides ubiquitin and dorfin have been identified as one of the major components of the abnormal intracellular perikaryal aggregates. As we recent...
متن کاملGamma-synuclein pathology in amyotrophic lateral sclerosis
OBJECTIVE The prominent histopathological feature of the amyotrophic lateral sclerosis (ALS) is the presence of intracellular inclusions in degenerating neurons and their axons. The appearance and localization of these pathological structures depend on an aggregated protein that forms their scaffold. We investigated if γ-synuclein, an aggregation-prone protein highly expressed in healthy motor ...
متن کاملInvestigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by degeneration and loss of upper and lower motor neurons from the motor cortex, brainstem and spinal cord although evidence is suggesting that there is further involvement of other cell types in the surrounding tissue. Transcriptomic analysis by gene expression profiling using microarray technology has enabled the dete...
متن کاملCatenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregatio...
متن کاملBcl-2 overexpression does not protect neurons from mutant neurofilament-mediated motor neuron degeneration.
Transgenic mice with a point mutation in the light neurofilament gene develop amyotrophic lateral sclerosis-like motor neuron disease characterized by selective spinal motor neuron loss, neurofilamentous accumulations, and severe muscle atrophy. To test whether the large motor neurons at risk in this disease could be protected from mutant neurofilament-mediated killing, these mice were bred to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 61 شماره
صفحات -
تاریخ انتشار 1974